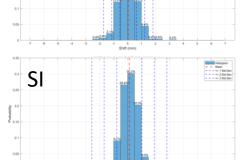
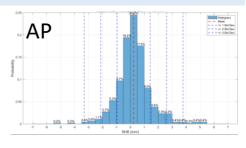
Theme: Physics Abstract No:. PTCOG-AO2025-ABS-0089

Abstract Title: Analysis of Inter-Fractional Displacement in Prostate Cancer Patients Receiving Carbon-Ion Radiotherapy Using Fiducial Markers on Digital Radiography

<u>Changhwan Kim</u>^{1,†}, Taeyoung Bak^{2,†}, Soorim Han¹, Tae Ho Kim¹, Min Cheol Han¹, Jimin Lee^{3,*}, Chae-Seon Hong^{1,*}, and Jin Sung Kim¹

Background / Aims:


This study aims to analyze inter-fractional positional variability of prostate cancer
patients by quantifying the displacement of implanted fiducial markers observed on
oblique digital radiography (DR) images across treatment sessions.


Subjects and Methods:

- Patients: 20 prostate cancer cases who received carbon-ion radiotherapy between December 2023 and January 2025
- Image Acquisition and Analysis:
 - ✓ Two oblique DR images acquired per fraction
 - ✓ Marker segmentation using region-growing + manual editing
 - ✓ Marker coordinates were extracted to reconstruct 3D positions using stereo geometry.
 - ✓ A total of 480 data points (20 patients X 12 fractions X 2 markers) were assessed for inter-fractional displacement in three orthogonal directions.

Results and Conclusions:

RL

Direction	Mean (mm)	SD (mm)
Right-Left (RL)	0.05	0.59
Anterior–Posterior (AP)	0.24	1.18
Superior–Inferior (SI)	0.13	0.90

- Statistical analysis showed that inter-fractional displacement was most prominent in the anterior-posterior direction (0.24±1.18 mm), mainly influenced by variations in bladder filling.
- All displacements remained within clinical tolerance (≤ 3 mm).
- This study demonstrates that fiducial marker-based analysis on DR images enables reliable quantification of prostate positional changes during carbon-ion therapy.
- The framework established here may contribute to refining clinical guidelines and improving the safety and precision of image-guided radiotherapy in prostate cancer patients.

¹Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea

²Graduate School of Artificial Intelligence, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea

³Department of Nuclear Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea